Skip to content

PyoIterator

Bases: PyoIterable[T], Iterator[T]

Base trait for lazy Iterator classes.

Pyochain's Iter[T] implements this trait. This trait extends PyoIterable[T] and collections.abc.Iterator[T], providing additional methods for working with lazy sequences.

Source code in src/pyochain/traits/_iterable.py
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
class PyoIterator[T](PyoIterable[T], Iterator[T]):
    """Base trait for lazy `Iterator` classes.

    Pyochain's `Iter[T]` implements this trait.
    This trait extends `PyoIterable[T]` and `collections.abc.Iterator[T]`, providing
    additional methods for working with lazy sequences.
    """

    __slots__ = ()

    def nth(self, n: int) -> Option[T]:
        """Return the nth item of the `Iterable` at the specified *n*.

        This is similar to `__getitem__` but for lazy `Iterators`.

        If *n* is out of bounds, returns `NONE`.

        Args:
            n (int): The index of the item to retrieve.

        Returns:
            Option[T]: `Some(item)` at the specified *n*.

        ```python
        >>> import pyochain as pc
        >>> pc.Iter([10, 20]).nth(1)
        Some(20)
        >>> pc.Iter([10, 20]).nth(3)
        NONE

        ```
        """
        try:
            return Some(next(itertools.islice(self.__iter__(), n, n + 1)))
        except StopIteration:
            return NONE

    def eq(self, other: Iterable[T]) -> bool:
        """Check if two `Iterable`s are equal based on their data.

        Note:
            This will consume any `Iterator` instances involved in the comparison (**self** and/or **other**).

        Args:
            other (Iterable[T]): Another instance of `Iterable[T]` to compare against.

        Returns:
            bool: `True` if the underlying data are equal, `False` otherwise.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1,2,3)).eq(pc.Iter((1,2,3)))
        True
        >>> pc.Iter((1,2,3)).eq(pc.Seq([1,2]))
        False
        >>> pc.Iter((1,2,3)).eq(pc.Iter((1,2)))
        False
        >>> pc.Iter((1,2,3)).eq(pc.Vec([1,2,3]))
        True

        ```
        """
        return tls.eq(self.__iter__(), other)

    def ne(self, other: Iterable[T]) -> bool:
        """Check if this `Iterator` and *other* are not equal based on their data.

        Args:
            other (Iterable[T]): Another instance of `Iterable[T]` to compare against.

        Returns:
            bool: `True` if the underlying data are not equal, `False` otherwise.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1,2,3)).ne(pc.Iter((1,2,3)))
        False
        >>> pc.Iter((1,2,3)).ne(pc.Seq([1,2]))
        True
        >>> pc.Iter((1,2,3)).ne(pc.Iter((1,2)))
        True
        >>> pc.Iter((1,2,3)).ne(pc.Vec([1,2,3]))
        False

        ```
        """
        return tls.ne(self.__iter__(), other)

    def le(self, other: Iterable[T]) -> bool:
        """Check if this `Iterator` is less than or equal to *other* based on their data.

        Args:
            other (Iterable[T]): Another instance of `Iterable[T]` to compare against.

        Returns:
            bool: `True` if the underlying data of self is less than or equal to that of other, `False` otherwise.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1,2)).le(pc.Seq((1,2,3)))
        True
        >>> pc.Iter((1,2,3)).le(pc.Seq((1,2)))
        False

        ```
        """
        return tls.le(self.__iter__(), other)

    def lt(self, other: Iterable[T]) -> bool:
        """Check if this `Iterator` is less than *other* based on their data.

        Args:
            other (Iterable[T]): Another `Iterable[T]` to compare against.

        Returns:
            bool: `True` if the underlying data of self is less than that of other, `False` otherwise.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1,2)).lt(pc.Seq((1,2,3)))
        True
        >>> pc.Iter((1,2,3)).lt(pc.Seq((1,2)))
        False

        ```
        """
        return tls.lt(self.__iter__(), other)

    def gt(self, other: Iterable[T]) -> bool:
        """Check if this `Iterator` is greater than *other* based on their data.

        Args:
            other (Iterable[T]): Another `Iterable[T]` to compare against.

        Returns:
            bool: `True` if the underlying data of **self** is greater than that of **other**, `False` otherwise.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1,2,3)).gt((1,2))
        True
        >>> pc.Iter((1,2)).gt((1,2,3))
        False

        ```
        """
        return tls.gt(self.__iter__(), other)

    def ge(self, other: Iterable[T]) -> bool:
        """Check if this `Iterator` is greater than or equal to *other* based on their data.

        Args:
            other (Iterable[T]): Another `Iterable[T]` to compare against.

        Returns:
            bool: `True` if the underlying data of **self** is greater than or equal to that of **other**, `False` otherwise.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1,2,3)).ge((1,2))
        True
        >>> pc.Iter((1,2)).ge((1,2,3))
        False

        ```
        """
        return tls.ge(self.__iter__(), other)

    def next(self) -> Option[T]:
        """Return the next element in the `Iterator`.

        Note:
            The actual `.__next__()` method must be conform to the Python `Iterator` Protocol, and is what will be actually called if you iterate over the `PyoIterator` instance.

            `PyoIterator.next()` is a convenience method that wraps the result in an `Option` to handle exhaustion gracefully, for custom use cases.

        Returns:
            Option[T]: The next element in the iterator. `Some[T]`, or `NONE` if the iterator is exhausted.

        Example:
        ```python
        >>> import pyochain as pc
        >>> it = pc.Seq([1, 2, 3]).iter()
        >>> it.next().unwrap()
        1
        >>> it.next().unwrap()
        2

        ```
        """
        return Option(next(self, None))

    def reduce(self, func: Callable[[T, T], T]) -> T:
        """Apply a function of two arguments cumulatively to the items of an iterable, from left to right.

        Args:
            func (Callable[[T, T], T]): Function to apply cumulatively to the items of the iterable.

        Returns:
            T: Single value resulting from cumulative reduction.

        This effectively reduces the `Iterator` to a single value.

        If initial is present, it is placed before the items of the `Iterator` in the calculation.

        It then serves as a default when the `Iterator` is empty.
        ```python
        >>> import pyochain as pc
        >>> pc.Iter([1, 2, 3]).reduce(lambda a, b: a + b)
        6

        ```
        """
        return functools.reduce(func, self)

    def fold[B](self, init: B, func: Callable[[B, T], B]) -> B:
        """Fold every element of the `Iterator` into an accumulator by applying an operation, returning the final result.

        Args:
            init (B): Initial value for the accumulator.
            func (Callable[[B, T], B]): Function that takes the accumulator and current element,
                returning the new accumulator value.

        Returns:
            B: The final accumulated value.

        Note:
            This is similar to `reduce()` but with an initial value, making it equivalent to
            Python `functools.reduce()` with an initializer.

        ```python
        >>> import pyochain as pc
        >>> pc.Iter([1, 2, 3]).fold(0, lambda acc, x: acc + x)
        6
        >>> pc.Iter([1, 2, 3]).fold(10, lambda acc, x: acc + x)
        16
        >>> pc.Iter(['a', 'b', 'c']).fold('', lambda acc, x: acc + x)
        'abc'

        ```
        """
        return functools.reduce(func, self, init)

    def find(self, predicate: Callable[[T], bool]) -> Option[T]:
        """Searches for an element of an iterator that satisfies a `predicate`.

        Takes a closure that returns true or false as `predicate`, and applies it to each element of the iterator.

        Args:
            predicate (Callable[[T], bool]): Function to evaluate each item.

        Returns:
            Option[T]: The first element satisfying the predicate. `Some(value)` if found, `NONE` otherwise.

        Example:
        ```python
        >>> import pyochain as pc
        >>> def gt_five(x: int) -> bool:
        ...     return x > 5
        >>>
        >>> def gt_nine(x: int) -> bool:
        ...     return x > 9
        >>>
        >>> pc.Iter(range(10)).find(predicate=gt_five)
        Some(6)
        >>> pc.Iter(range(10)).find(predicate=gt_nine).unwrap_or("missing")
        'missing'

        ```
        """
        return Option(next(filter(predicate, self), None))

    def try_find[E](
        self, predicate: Callable[[T], Result[bool, E]]
    ) -> Result[Option[T], E]:
        """Applies a function returning `Result[bool, E]` to find first matching element.

        Short-circuits: stops at the first successful `True` or on the first error.

        Args:
            predicate (Callable[[T], Result[bool, E]]): Function returning a `Result[bool, E]`.

        Returns:
            Result[Option[T], E]: The first matching element, or the first error.

        Example:
        ```python
        >>> import pyochain as pc
        >>> def is_even(x: int) -> pc.Result[bool, str]:
        ...     return pc.Ok(x % 2 == 0) if x >= 0 else pc.Err("negative number")
        >>>
        >>> pc.Iter(range(1, 6)).try_find(is_even)
        Ok(Some(2))

        ```
        """
        return tls.try_find(self.__iter__(), predicate)

    def try_fold[B, E](
        self, init: B, func: Callable[[B, T], Result[B, E]]
    ) -> Result[B, E]:
        """Folds every element into an accumulator, short-circuiting on error.

        Applies **func** cumulatively to items and the accumulator.

        If **func** returns an error, stops and returns that error.

        Args:
            init (B): Initial accumulator value.
            func (Callable[[B, T], Result[B, E]]): Function that takes the accumulator and element, returns a `Result[B, E]`.

        Returns:
            Result[B, E]: Final accumulator or the first error.

        Example:
        ```python
        >>> import pyochain as pc
        >>> def checked_add(acc: int, x: int) -> pc.Result[int, str]:
        ...     new_val = acc + x
        ...     if new_val > 100:
        ...         return pc.Err("overflow")
        ...     return pc.Ok(new_val)
        >>>
        >>> pc.Iter([1, 2, 3]).try_fold(0, checked_add)
        Ok(6)
        >>> pc.Iter([50, 40, 20]).try_fold(0, checked_add)
        Err('overflow')
        >>> pc.Iter([]).try_fold(0, checked_add)
        Ok(0)

        ```
        """
        return tls.try_fold(self.__iter__(), init, func)

    def try_reduce[E](
        self, func: Callable[[T, T], Result[T, E]]
    ) -> Result[Option[T], E]:
        """Reduces elements to a single one, short-circuiting on error.

        Uses the first element as the initial accumulator. If **func** returns an error, stops immediately.

        Args:
            func (Callable[[T, T], Result[T, E]]): Function that reduces two items, returns a `Result[T, E]`.

        Returns:
            Result[Option[T], E]: Final accumulated value or the first error. Returns `Ok(NONE)` for empty iterable.

        Example:
        ```python
        >>> import pyochain as pc
        >>> def checked_add(x: int, y: int) -> pc.Result[int, str]:
        ...     if x + y > 100:
        ...         return pc.Err("overflow")
        ...     return pc.Ok(x + y)
        >>>
        >>> pc.Iter([1, 2, 3]).try_reduce(checked_add)
        Ok(Some(6))
        >>> pc.Iter([50, 60]).try_reduce(checked_add)
        Err('overflow')
        >>> pc.Iter([]).try_reduce(checked_add)
        Ok(NONE)

        ```
        """
        return tls.try_reduce(self.__iter__(), func)

    def is_sorted[U: SupportsComparison[Any]](
        self: PyoIterator[U], *, reverse: bool = False, strict: bool = False
    ) -> bool:
        """Returns `True` if the items of the `Iterator` are in sorted order.

        The elements of the `Iterator` must support comparison operations.

        The function returns `False` after encountering the first out-of-order item.

        If there are no out-of-order items, the `Iterator` is exhausted.

        Credits to **more-itertools** for the implementation.

        See Also:
            - `is_sorted_by()`: If your elements do not support comparison operations directly, or you want to sort based on a specific attribute or transformation.

        Args:
            reverse (bool): Whether to check for descending order.
            strict (bool): Whether to enforce strict sorting (no equal elements).

        Returns:
            bool: `True` if items are sorted according to the criteria, `False` otherwise.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter([1, 2, 3, 4, 5]).is_sorted()
        True

        ```
        If strict, tests for strict sorting, that is, returns False if equal elements are found:
        ```python
        >>> pc.Iter([1, 2, 2]).is_sorted()
        True
        >>> pc.Iter([1, 2, 2]).is_sorted(strict=True)
        False

        ```

        """
        return tls.is_sorted(self.__iter__(), reverse=reverse, strict=strict)

    def is_sorted_by(
        self,
        key: Callable[[T], SupportsComparison[Any]],
        *,
        reverse: bool = False,
        strict: bool = False,
    ) -> bool:
        """Returns `True` if the items of the `Iterator` are in sorted order according to the key function.

        The function returns `False` after encountering the first out-of-order item.

        If there are no out-of-order items, the `Iterator` is exhausted.

        Credits to **more-itertools** for the implementation.

        Args:
            key (Callable[[T], SupportsComparison[Any]]): Function to extract a comparison key from each element.
            reverse (bool): Whether to check for descending order.
            strict (bool): Whether to enforce strict sorting (no equal elements).

        Returns:
            bool: `True` if items are sorted according to the criteria, `False` otherwise.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter(["1", "2", "3", "4", "5"]).is_sorted_by(int)
        True
        >>> pc.Iter(["5", "4", "3", "1", "2"]).is_sorted_by(int, reverse=True)
        False

        ```
        If strict, tests for strict sorting, that is, returns False if equal elements are found:
        ```python
        >>> pc.Iter(["1", "2", "2"]).is_sorted_by(int)
        True
        >>> pc.Iter(["1", "2", "2"]).is_sorted_by(key=int, strict=True)
        False

        ```
        """
        return tls.is_sorted_by(self.__iter__(), key, reverse=reverse, strict=strict)

    def all_equal[U](self, key: Callable[[T], U] | None = None) -> bool:
        """Return `True` if all items of the `Iterator` are equal.

        A function that accepts a single argument and returns a transformed version of each input item can be specified with **key**.

        Credits to **more-itertools** for the implementation.

        Args:
            key (Callable[[T], U] | None): Function to transform items before comparison.

        Returns:
            bool: `True` if all items are equal, `False` otherwise.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter("AaaA").all_equal(key=str.casefold)
        True
        >>> pc.Iter([1, 2, 3]).all_equal(key=lambda x: x < 10)
        True

        ```
        """
        iterator = itertools.groupby(self.__iter__(), key)
        for _first in iterator:
            for _second in iterator:
                return False
            return True
        return True

    def all_unique[U](self, key: Callable[[T], U] | None = None) -> bool:
        """Returns True if all the elements of iterable are unique.

        The function returns as soon as the first non-unique element is encountered.

        `Iters` with a mix of hashable and unhashable items can be used, but the function will be slower for unhashable items.

        A function that accepts a single argument and returns a transformed version of each input item can be specified with **key**.

        Credits to **more-itertools** for the implementation.

        Args:
            key (Callable[[T], U] | None): Function to transform items before comparison.

        Returns:
            bool: `True` if all elements are unique, `False` otherwise.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter("ABCB").all_unique()
        False
        >>> pc.Iter("ABCb").all_unique()
        True
        >>> pc.Iter("ABCb").all_unique(str.lower)
        False

        ```
        """
        seenset: set[T | U] = set()
        seenset_add = seenset.add
        seenlist: list[T | U] = []
        seenlist_add = seenlist.append
        for element in map(key, self.__iter__()) if key else self.__iter__():
            try:
                if element in seenset:
                    return False
                seenset_add(element)
            except TypeError:
                if element in seenlist:
                    return False
                seenlist_add(element)
        return True

    def argmax[U](self, key: Callable[[T], U] | None = None) -> int:
        """Index of the first occurrence of a maximum value in the `Iterator`.

        A function that accepts a single argument and returns a transformed version of each input item can be specified with **key**.

        Credits to more-itertools for the implementation.

        Args:
            key (Callable[[T], U] | None): Optional function to determine the value for comparison.

        Returns:
            int: The index of the maximum value.

        ```python
        >>> import pyochain as pc
        >>> pc.Iter("abcdefghabcd").argmax()
        7
        >>> pc.Iter([0, 1, 2, 3, 3, 2, 1, 0]).argmax()
        3

        ```
        For example, identify the best machine learning model:
        ```python
        >>> models = pc.Seq(["svm", "random forest", "knn", "naïve bayes"])
        >>> accuracy = pc.Seq([68, 61, 84, 72])
        >>> # Most accurate model
        >>> models.get(accuracy.iter().argmax()).unwrap()
        'knn'
        >>>
        >>> # Best accuracy
        >>> accuracy.max()
        84

        ```
        """
        it = self.__iter__()
        if key is not None:
            it = map(key, it)
        return max(enumerate(it), key=itemgetter(1))[0]

    def argmin[U](self, key: Callable[[T], U] | None = None) -> int:
        """Index of the first occurrence of a minimum value in the `Iterator`.

        A function that accepts a single argument and returns a transformed version of each input item can be specified with **key**.

        Credits to more-itertools for the implementation.

        Args:
            key (Callable[[T], U] | None): Optional function to determine the value for comparison.

        Returns:
            int: The index of the minimum value.

        ```python
        >>> import pyochain as pc
        >>> # Example 1: Basic usage
        >>> pc.Iter("efghabcdijkl").argmin()
        4
        >>> pc.Iter([3, 2, 1, 0, 4, 2, 1, 0]).argmin()
        3
        >>> # Example 2: look up a label corresponding to the position of a value that minimizes a cost function
        >>> def cost(x: int) -> float:
        ...     "Days for a wound to heal given a subject's age."
        ...     return x**2 - 20 * x + 150
        >>>
        >>> labels = pc.Seq(["homer", "marge", "bart", "lisa", "maggie"])
        >>> ages = pc.Seq([35, 30, 10, 9, 1])
        >>> # Fastest healing family member
        >>> labels.get(ages.iter().argmin(key=cost)).unwrap()
        'bart'
        >>> # Age with fastest healing
        >>> ages.min_by(key=cost)
        10

        ```
        """
        it = self.__iter__()
        if key is not None:
            it = map(key, it)
        return min(enumerate(it), key=itemgetter(1))[0]

    def take_while(self, predicate: Callable[[T], bool]) -> Self:
        """Take items while predicate holds.

        Args:
            predicate (Callable[[T], bool]): Function to evaluate each item.

        Returns:
            Self: An `Iterator` of the items taken while the predicate is true.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1, 2, 0)).take_while(lambda x: x > 0).collect()
        Seq(1, 2)

        ```
        """
        return self.__class__(itertools.takewhile(predicate, self.__iter__()))

    def skip_while(self, predicate: Callable[[T], bool]) -> Self:
        """Drop items while predicate holds.

        Args:
            predicate (Callable[[T], bool]): Function to evaluate each item.

        Returns:
            Self: An `Iterator` of the items after skipping those for which the predicate is true.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1, 2, 0)).skip_while(lambda x: x > 0).collect()
        Seq(0,)

        ```
        """
        return self.__class__(itertools.dropwhile(predicate, self.__iter__()))

    def compress(self, *selectors: bool) -> Self:
        """Filter elements using a boolean selector iterable.

        Args:
            *selectors (bool): Boolean values indicating which elements to keep.

        Returns:
            Self: An `Iterator` of the items selected by the boolean selectors.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter("ABCDEF").compress(1, 0, 1, 0, 1, 1).collect()
        Seq('A', 'C', 'E', 'F')

        ```
        """
        return self.__class__(itertools.compress(self.__iter__(), selectors))

    def unique(self, key: Callable[[T], Any] | None = None) -> Self:
        """Return only unique elements of the iterable.

        Args:
            key (Callable[[T], Any] | None): Function to transform items before comparison.

        Returns:
            Self: An `Iterator` of the unique items.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter([1, 2, 3]).unique().collect()
        Seq(1, 2, 3)
        >>> pc.Iter([1, 2, 1, 3]).unique().collect()
        Seq(1, 2, 3)

        ```
        Uniqueness can be defined by key keyword
        ```python
        >>> pc.Iter(["cat", "mouse", "dog", "hen"]).unique(key=len).collect()
        Seq('cat', 'mouse')

        ```
        """
        return self.__class__(cz.itertoolz.unique(self.__iter__(), key=key))

    def take(self, n: int) -> Self:
        """Creates an iterator that yields the first n elements, or fewer if the underlying iterator ends sooner.

        `Iter.take(n)` yields elements until n elements are yielded or the end of the iterator is reached (whichever happens first).

        The returned iterator is either:

        - A prefix of length n if the original iterator contains at least n elements
        - All of the (fewer than n) elements of the original iterator if it contains fewer than n elements.

        Args:
            n (int): Number of elements to take.

        Returns:
            Self: An `Iterator` of the first n items.

        Example:
        ```python
        >>> import pyochain as pc
        >>> data = [1, 2, 3]
        >>> pc.Iter(data).take(2).collect()
        Seq(1, 2)
        >>> pc.Iter(data).take(5).collect()
        Seq(1, 2, 3)

        ```
        """
        return self.__class__(itertools.islice(self.__iter__(), n))

    def skip(self, n: int) -> Self:
        """Drop first n elements.

        Args:
            n (int): Number of elements to skip.

        Returns:
            Self: An `Iterator` of the items after skipping the first n items.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1, 2, 3)).skip(1).collect()
        Seq(2, 3)

        ```
        """
        return self.__class__(cz.itertoolz.drop(n, self.__iter__()))

    def step_by(self, step: int) -> Self:
        """Creates an `Iterator` starting at the same point, but stepping by the given **step** at each iteration.

        Note:
            The first element of the iterator will always be returned, regardless of the **step** given.

        Args:
            step (int): Step size for selecting items.

        Returns:
            Self: An `Iterator` of every nth item.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter([0, 1, 2, 3, 4, 5]).step_by(2).collect()
        Seq(0, 2, 4)

        ```
        """
        return self.__class__(cz.itertoolz.take_nth(step, self.__iter__()))

    def slice(
        self,
        start: int | None = None,
        stop: int | None = None,
        step: int | None = None,
    ) -> Self:
        """Return a slice of the `Iterator`.

        Args:
            start (int | None): Starting index of the slice.
            stop (int | None): Ending index of the slice.
            step (int | None): Step size for the slice.

        Returns:
            Self: An `Iterator` of the sliced items.

        Example:
        ```python
        >>> import pyochain as pc
        >>> data = (1, 2, 3, 4, 5)
        >>> pc.Iter(data).slice(1, 4).collect()
        Seq(2, 3, 4)
        >>> pc.Iter(data).slice(step=2).collect()
        Seq(1, 3, 5)

        ```
        """
        return self.__class__(itertools.islice(self.__iter__(), start, stop, step))

    def cycle(self) -> Self:
        """Repeat the `Iterator` indefinitely.

        Warning:
            This creates an infinite `Iterator`.

            Be sure to use `Iter.take()` or `Iter.slice()` to limit the number of items taken.

        See Also:
            `Iter.repeat()` to repeat *self* as elements (`Iter[Self]`).

        Returns:
            Self: A new `Iterator` that cycles through the elements indefinitely.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1, 2)).cycle().take(5).collect()
        Seq(1, 2, 1, 2, 1)

        ```
        """
        return self.__class__(itertools.cycle(self.__iter__()))

    def intersperse(self, element: T) -> Self:
        """Creates a new `Iterator` which places a copy of separator between adjacent items of the original iterator.

        Args:
            element (T): The element to interpose between items.

        Returns:
            Self: A new `Iterator` with the element interposed.

        Example:
        ```python
        >>> import pyochain as pc
        >>> # Simple example with numbers
        >>> pc.Iter([1, 2, 3]).intersperse(0).collect()
        Seq(1, 0, 2, 0, 3)
        >>> # Useful when chaining with other operations
        >>> pc.Iter([10, 20, 30]).intersperse(5).sum()
        70
        >>> # Inserting separators between groups, then flattening
        >>> pc.Iter([[1, 2], [3, 4], [5, 6]]).intersperse([-1]).flatten().collect()
        Seq(1, 2, -1, 3, 4, -1, 5, 6)

        ```
        """
        return self.__class__(cz.itertoolz.interpose(element, self.__iter__()))

    def random_sample(
        self, probability: float, state: Random | int | None = None
    ) -> Self:
        """Return elements from the `Iterator` with a given *probability*.

        `.random_sample()` considers each item independently and without replacement.

        See below how the first time it returned 13 items and the next time it returned 6 items.

        Args:
            probability (float): The probability of including each element.
            state (Random | int | None): Random state or seed for deterministic sampling.

        Returns:
            Self: A new `Iterator` with randomly sampled elements.
        ```python
        >>> import pyochain as pc
        >>> data = pc.Iter(range(100)).collect()
        >>> data.iter().random_sample(0.1).collect()  # doctest: +SKIP
        Seq(6, 9, 19, 35, 45, 50, 58, 62, 68, 72, 78, 86, 95)
        >>> data.iter().random_sample(0.1).collect()  # doctest: +SKIP
        Seq(6, 44, 54, 61, 69, 94)
        ```
        Providing an integer seed for random_state will result in deterministic sampling.

        Given the same seed it will return the same sample every time.
        ```python
        >>> data.iter().random_sample(0.1, state=2016).collect()
        Seq(7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98)
        >>> data.iter().random_sample(0.1, state=2016).collect()
        Seq(7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98)

        ```
        random_state can also be any object with a method random that returns floats between 0.0 and 1.0 (exclusive).
        ```python
        >>> from random import Random
        >>> randobj = Random(2016)
        >>> data.iter().random_sample(0.1, state=randobj).collect()
        Seq(7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98)

        ```
        """
        return self.__class__(
            cz.itertoolz.random_sample(probability, self.__iter__(), random_state=state)
        )

    def insert(self, value: T) -> Self:
        """Prepend the *value* to the `Iterator`.

        Note:
            This can be considered the equivalent as `list.append()`, but for a lazy `Iterator`.
            However, append add the value at the **end**, while insert add it at the **beginning**.

        See Also:
            `Iter.chain()` to add multiple elements at the end of the `Iterator`.

        Args:
            value (T): The value to prepend.

        Returns:
            Self: A new Iterable wrapper with the value prepended.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((2, 3)).insert(1).collect()
        Seq(1, 2, 3)

        ```
        """
        return self.__class__(cz.itertoolz.cons(value, self.__iter__()))

    def interleave(self, *others: Iterable[T]) -> Self:
        """Interleave multiple sequences element-wise.

        Args:
            *others (Iterable[T]): Other iterables to interleave.

        Returns:
            Self: A new Iterable wrapper with interleaved elements.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1, 2)).interleave((3, 4)).collect()
        Seq(1, 3, 2, 4)

        ```
        """
        return self.__class__(cz.itertoolz.interleave((self.__iter__(), *others)))

    def chain(self, *others: Iterable[T]) -> Self:
        """Concatenate **self** with one or more `Iterables`, any of which may be infinite.

        In other words, it links **self** and **others** together, in a chain. 🔗

        An infinite `Iterable` will prevent the rest of the arguments from being included.

        This is equivalent to `list.extend()`, except it is fully lazy and works with any `Iterable`.

        See Also:
            `Iter.insert()` to add a single element at the beginning of the `Iterator`.

        Args:
            *others (Iterable[T]): Other iterables to concatenate.

        Returns:
            Self: A new `Iterator` which will first iterate over values from the original `Iterator` and then over values from the **others** `Iterable`s.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1, 2)).chain((3, 4), [5]).collect()
        Seq(1, 2, 3, 4, 5)
        >>> pc.Iter((1, 2)).chain(pc.Iter.from_count(3)).take(5).collect()
        Seq(1, 2, 3, 4, 5)

        ```
        """
        return self.__class__(cz.itertoolz.concat((self.__iter__(), *others)))

    def elements(self) -> Self:
        """Iterator over elements repeating each as many times as its count.

        Note:
            if an element's count has been set to zero or is a negative
            number, elements() will ignore it.

        Returns:
            Self: A new `Iterator` with elements repeated according to their counts.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter("ABCABC").elements().sort()
        Vec('A', 'A', 'B', 'B', 'C', 'C')

        ```
        Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
        ```python
        >>> import math
        >>> data = [2, 2, 3, 3, 3, 17]
        >>> pc.Iter(data).elements().into(math.prod)
        1836

        ```
        """
        from collections import Counter

        return self.__class__(Counter(self.__iter__()).elements())

    def accumulate(self, func: Callable[[T, T], T], initial: T | None = None) -> Self:
        """Return an `Iterator` of accumulated binary function results.

        In principle, `.accumulate()` is similar to `.fold()` if you provide it with the same binary function.

        However, instead of returning the final accumulated result, it returns an `Iterator` that yields the current value `T` of the accumulator for each iteration.

        In other words, the last element yielded by `.accumulate()` is what would have been returned by `.fold()` if it had been used instead.

        Args:
            func (Callable[[T, T], T]): A binary function to apply cumulatively.
            initial (T | None): Optional initial value to start the accumulation.

        Returns:
            Self: A new `Iterator` with accumulated results.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter((1, 2, 3)).accumulate(lambda a, b: a + b, 0).collect()
        Seq(0, 1, 3, 6)
        >>> # The final accumulated result is the same as fold:
        >>> pc.Iter((1,2,3)).fold(0, lambda a, b: a + b)
        6
        >>> pc.Iter((1, 2, 3)).accumulate(lambda a, b: a * b).collect()
        Seq(1, 2, 6)

        ```
        """
        return self.__class__(
            itertools.accumulate(self.__iter__(), func, initial=initial)
        )

    def for_each[**P](
        self,
        func: Callable[Concatenate[T, P], Any],
        *args: P.args,
        **kwargs: P.kwargs,
    ) -> None:
        """Consume the `Iterator` by applying a function to each element in the `Iterable`.

        Is a terminal operation, and is useful for functions that have side effects,
        or when you want to force evaluation of a lazy iterable.

        Args:
            func (Callable[Concatenate[T, P], Any]): Function to apply to each element.
            *args (P.args): Positional arguments for the function.
            **kwargs (P.kwargs): Keyword arguments for the function.

        Returns:
            None: This is a terminal operation with no return value.


        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Seq([1, 2, 3]).iter().for_each(lambda x: print(x + 1))
        2
        3
        4

        ```
        """
        for v in self.__iter__():
            func(v, *args, **kwargs)

    @overload
    def for_each_star[R](
        self: PyoIterator[tuple[Any]],
        func: Callable[[Any], R],
    ) -> None: ...
    @overload
    def for_each_star[T1, T2, R](
        self: PyoIterator[tuple[T1, T2]],
        func: Callable[[T1, T2], R],
    ) -> None: ...
    @overload
    def for_each_star[T1, T2, T3, R](
        self: PyoIterator[tuple[T1, T2, T3]],
        func: Callable[[T1, T2, T3], R],
    ) -> None: ...
    @overload
    def for_each_star[T1, T2, T3, T4, R](
        self: PyoIterator[tuple[T1, T2, T3, T4]],
        func: Callable[[T1, T2, T3, T4], R],
    ) -> None: ...
    @overload
    def for_each_star[T1, T2, T3, T4, T5, R](
        self: PyoIterator[tuple[T1, T2, T3, T4, T5]],
        func: Callable[[T1, T2, T3, T4, T5], R],
    ) -> None: ...
    @overload
    def for_each_star[T1, T2, T3, T4, T5, T6, R](
        self: PyoIterator[tuple[T1, T2, T3, T4, T5, T6]],
        func: Callable[[T1, T2, T3, T4, T5, T6], R],
    ) -> None: ...
    @overload
    def for_each_star[T1, T2, T3, T4, T5, T6, T7, R](
        self: PyoIterator[tuple[T1, T2, T3, T4, T5, T6, T7]],
        func: Callable[[T1, T2, T3, T4, T5, T6, T7], R],
    ) -> None: ...
    @overload
    def for_each_star[T1, T2, T3, T4, T5, T6, T7, T8, R](
        self: PyoIterator[tuple[T1, T2, T3, T4, T5, T6, T7, T8]],
        func: Callable[[T1, T2, T3, T4, T5, T6, T7, T8], R],
    ) -> None: ...
    @overload
    def for_each_star[T1, T2, T3, T4, T5, T6, T7, T8, T9, R](
        self: PyoIterator[tuple[T1, T2, T3, T4, T5, T6, T7, T8, T9]],
        func: Callable[[T1, T2, T3, T4, T5, T6, T7, T8, T9], R],
    ) -> None: ...
    @overload
    def for_each_star[T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R](
        self: PyoIterator[tuple[T1, T2, T3, T4, T5, T6, T7, T8, T9, T10]],
        func: Callable[[T1, T2, T3, T4, T5, T6, T7, T8, T9, T10], R],
    ) -> None: ...
    def for_each_star[U: Iterable[Any], R](
        self: PyoIterator[U],
        func: Callable[..., R],
    ) -> None:
        """Consume the `Iterator` by applying a function to each unpacked item in the `Iterable` element.

        Is a terminal operation, and is useful for functions that have side effects,
        or when you want to force evaluation of a lazy iterable.

        Each item yielded by the `Iterator` is expected to be an `Iterable` itself (e.g., a tuple or list),
        and its elements are unpacked as arguments to the provided function.

        This is often used after methods like `zip()` or `enumerate()` that yield tuples.

        Args:
            func (Callable[..., R]): Function to apply to each unpacked element.

        Example:
        ```python
        >>> import pyochain as pc
        >>> pc.Iter([(1, 2), (3, 4)]).for_each_star(lambda x, y: print(x + y))
        3
        7

        ```
        """
        for item in self.__iter__():
            func(*item)

    def try_for_each[E](self, f: Callable[[T], Result[Any, E]]) -> Result[None, E]:
        """Applies a fallible function to each item in the `Iterator`, stopping at the first error and returning that error.

        This can also be thought of as the fallible form of `.for_each()`.

        Args:
            f (Callable[[T], Result[Any, E]]): A function that takes an item of type `T` and returns a `Result`.

        Returns:
            Result[None, E]: Returns `Ok(None)` if all applications of **f** were successful (i.e., returned `Ok`), or the first error `E` encountered.

        Example:
        ```python
        >>> import pyochain as pc
        >>> def validate_positive(n: int) -> pc.Result[None, str]:
        ...     if n > 0:
        ...         return pc.Ok(None)
        ...     return pc.Err(f"Value {n} is not positive")
        >>> pc.Iter([1, 2, 3, 4, 5]).try_for_each(validate_positive)
        Ok(None)
        >>> # Short-circuit on first error:
        >>> pc.Iter([1, 2, -1, 4]).try_for_each(validate_positive)
        Err('Value -1 is not positive')

        ```
        """
        for item in self.__iter__():
            res = f(item)
            if res.is_err():
                return res
        return Ok(None)

accumulate(func, initial=None)

Return an Iterator of accumulated binary function results.

In principle, .accumulate() is similar to .fold() if you provide it with the same binary function.

However, instead of returning the final accumulated result, it returns an Iterator that yields the current value T of the accumulator for each iteration.

In other words, the last element yielded by .accumulate() is what would have been returned by .fold() if it had been used instead.

Parameters:

Name Type Description Default
func Callable[[T, T], T]

A binary function to apply cumulatively.

required
initial T | None

Optional initial value to start the accumulation.

None

Returns:

Name Type Description
Self Self

A new Iterator with accumulated results.

Example:

>>> import pyochain as pc
>>> pc.Iter((1, 2, 3)).accumulate(lambda a, b: a + b, 0).collect()
Seq(0, 1, 3, 6)
>>> # The final accumulated result is the same as fold:
>>> pc.Iter((1,2,3)).fold(0, lambda a, b: a + b)
6
>>> pc.Iter((1, 2, 3)).accumulate(lambda a, b: a * b).collect()
Seq(1, 2, 6)

Source code in src/pyochain/traits/_iterable.py
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
def accumulate(self, func: Callable[[T, T], T], initial: T | None = None) -> Self:
    """Return an `Iterator` of accumulated binary function results.

    In principle, `.accumulate()` is similar to `.fold()` if you provide it with the same binary function.

    However, instead of returning the final accumulated result, it returns an `Iterator` that yields the current value `T` of the accumulator for each iteration.

    In other words, the last element yielded by `.accumulate()` is what would have been returned by `.fold()` if it had been used instead.

    Args:
        func (Callable[[T, T], T]): A binary function to apply cumulatively.
        initial (T | None): Optional initial value to start the accumulation.

    Returns:
        Self: A new `Iterator` with accumulated results.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1, 2, 3)).accumulate(lambda a, b: a + b, 0).collect()
    Seq(0, 1, 3, 6)
    >>> # The final accumulated result is the same as fold:
    >>> pc.Iter((1,2,3)).fold(0, lambda a, b: a + b)
    6
    >>> pc.Iter((1, 2, 3)).accumulate(lambda a, b: a * b).collect()
    Seq(1, 2, 6)

    ```
    """
    return self.__class__(
        itertools.accumulate(self.__iter__(), func, initial=initial)
    )

all_equal(key=None)

Return True if all items of the Iterator are equal.

A function that accepts a single argument and returns a transformed version of each input item can be specified with key.

Credits to more-itertools for the implementation.

Parameters:

Name Type Description Default
key Callable[[T], U] | None

Function to transform items before comparison.

None

Returns:

Name Type Description
bool bool

True if all items are equal, False otherwise.

Example:

>>> import pyochain as pc
>>> pc.Iter("AaaA").all_equal(key=str.casefold)
True
>>> pc.Iter([1, 2, 3]).all_equal(key=lambda x: x < 10)
True

Source code in src/pyochain/traits/_iterable.py
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
def all_equal[U](self, key: Callable[[T], U] | None = None) -> bool:
    """Return `True` if all items of the `Iterator` are equal.

    A function that accepts a single argument and returns a transformed version of each input item can be specified with **key**.

    Credits to **more-itertools** for the implementation.

    Args:
        key (Callable[[T], U] | None): Function to transform items before comparison.

    Returns:
        bool: `True` if all items are equal, `False` otherwise.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter("AaaA").all_equal(key=str.casefold)
    True
    >>> pc.Iter([1, 2, 3]).all_equal(key=lambda x: x < 10)
    True

    ```
    """
    iterator = itertools.groupby(self.__iter__(), key)
    for _first in iterator:
        for _second in iterator:
            return False
        return True
    return True

all_unique(key=None)

Returns True if all the elements of iterable are unique.

The function returns as soon as the first non-unique element is encountered.

Iters with a mix of hashable and unhashable items can be used, but the function will be slower for unhashable items.

A function that accepts a single argument and returns a transformed version of each input item can be specified with key.

Credits to more-itertools for the implementation.

Parameters:

Name Type Description Default
key Callable[[T], U] | None

Function to transform items before comparison.

None

Returns:

Name Type Description
bool bool

True if all elements are unique, False otherwise.

Example:

>>> import pyochain as pc
>>> pc.Iter("ABCB").all_unique()
False
>>> pc.Iter("ABCb").all_unique()
True
>>> pc.Iter("ABCb").all_unique(str.lower)
False

Source code in src/pyochain/traits/_iterable.py
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
def all_unique[U](self, key: Callable[[T], U] | None = None) -> bool:
    """Returns True if all the elements of iterable are unique.

    The function returns as soon as the first non-unique element is encountered.

    `Iters` with a mix of hashable and unhashable items can be used, but the function will be slower for unhashable items.

    A function that accepts a single argument and returns a transformed version of each input item can be specified with **key**.

    Credits to **more-itertools** for the implementation.

    Args:
        key (Callable[[T], U] | None): Function to transform items before comparison.

    Returns:
        bool: `True` if all elements are unique, `False` otherwise.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter("ABCB").all_unique()
    False
    >>> pc.Iter("ABCb").all_unique()
    True
    >>> pc.Iter("ABCb").all_unique(str.lower)
    False

    ```
    """
    seenset: set[T | U] = set()
    seenset_add = seenset.add
    seenlist: list[T | U] = []
    seenlist_add = seenlist.append
    for element in map(key, self.__iter__()) if key else self.__iter__():
        try:
            if element in seenset:
                return False
            seenset_add(element)
        except TypeError:
            if element in seenlist:
                return False
            seenlist_add(element)
    return True

argmax(key=None)

Index of the first occurrence of a maximum value in the Iterator.

A function that accepts a single argument and returns a transformed version of each input item can be specified with key.

Credits to more-itertools for the implementation.

Parameters:

Name Type Description Default
key Callable[[T], U] | None

Optional function to determine the value for comparison.

None

Returns:

Name Type Description
int int

The index of the maximum value.

>>> import pyochain as pc
>>> pc.Iter("abcdefghabcd").argmax()
7
>>> pc.Iter([0, 1, 2, 3, 3, 2, 1, 0]).argmax()
3
For example, identify the best machine learning model:
>>> models = pc.Seq(["svm", "random forest", "knn", "naïve bayes"])
>>> accuracy = pc.Seq([68, 61, 84, 72])
>>> # Most accurate model
>>> models.get(accuracy.iter().argmax()).unwrap()
'knn'
>>>
>>> # Best accuracy
>>> accuracy.max()
84

Source code in src/pyochain/traits/_iterable.py
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
def argmax[U](self, key: Callable[[T], U] | None = None) -> int:
    """Index of the first occurrence of a maximum value in the `Iterator`.

    A function that accepts a single argument and returns a transformed version of each input item can be specified with **key**.

    Credits to more-itertools for the implementation.

    Args:
        key (Callable[[T], U] | None): Optional function to determine the value for comparison.

    Returns:
        int: The index of the maximum value.

    ```python
    >>> import pyochain as pc
    >>> pc.Iter("abcdefghabcd").argmax()
    7
    >>> pc.Iter([0, 1, 2, 3, 3, 2, 1, 0]).argmax()
    3

    ```
    For example, identify the best machine learning model:
    ```python
    >>> models = pc.Seq(["svm", "random forest", "knn", "naïve bayes"])
    >>> accuracy = pc.Seq([68, 61, 84, 72])
    >>> # Most accurate model
    >>> models.get(accuracy.iter().argmax()).unwrap()
    'knn'
    >>>
    >>> # Best accuracy
    >>> accuracy.max()
    84

    ```
    """
    it = self.__iter__()
    if key is not None:
        it = map(key, it)
    return max(enumerate(it), key=itemgetter(1))[0]

argmin(key=None)

Index of the first occurrence of a minimum value in the Iterator.

A function that accepts a single argument and returns a transformed version of each input item can be specified with key.

Credits to more-itertools for the implementation.

Parameters:

Name Type Description Default
key Callable[[T], U] | None

Optional function to determine the value for comparison.

None

Returns:

Name Type Description
int int

The index of the minimum value.

>>> import pyochain as pc
>>> # Example 1: Basic usage
>>> pc.Iter("efghabcdijkl").argmin()
4
>>> pc.Iter([3, 2, 1, 0, 4, 2, 1, 0]).argmin()
3
>>> # Example 2: look up a label corresponding to the position of a value that minimizes a cost function
>>> def cost(x: int) -> float:
...     "Days for a wound to heal given a subject's age."
...     return x**2 - 20 * x + 150
>>>
>>> labels = pc.Seq(["homer", "marge", "bart", "lisa", "maggie"])
>>> ages = pc.Seq([35, 30, 10, 9, 1])
>>> # Fastest healing family member
>>> labels.get(ages.iter().argmin(key=cost)).unwrap()
'bart'
>>> # Age with fastest healing
>>> ages.min_by(key=cost)
10
Source code in src/pyochain/traits/_iterable.py
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
def argmin[U](self, key: Callable[[T], U] | None = None) -> int:
    """Index of the first occurrence of a minimum value in the `Iterator`.

    A function that accepts a single argument and returns a transformed version of each input item can be specified with **key**.

    Credits to more-itertools for the implementation.

    Args:
        key (Callable[[T], U] | None): Optional function to determine the value for comparison.

    Returns:
        int: The index of the minimum value.

    ```python
    >>> import pyochain as pc
    >>> # Example 1: Basic usage
    >>> pc.Iter("efghabcdijkl").argmin()
    4
    >>> pc.Iter([3, 2, 1, 0, 4, 2, 1, 0]).argmin()
    3
    >>> # Example 2: look up a label corresponding to the position of a value that minimizes a cost function
    >>> def cost(x: int) -> float:
    ...     "Days for a wound to heal given a subject's age."
    ...     return x**2 - 20 * x + 150
    >>>
    >>> labels = pc.Seq(["homer", "marge", "bart", "lisa", "maggie"])
    >>> ages = pc.Seq([35, 30, 10, 9, 1])
    >>> # Fastest healing family member
    >>> labels.get(ages.iter().argmin(key=cost)).unwrap()
    'bart'
    >>> # Age with fastest healing
    >>> ages.min_by(key=cost)
    10

    ```
    """
    it = self.__iter__()
    if key is not None:
        it = map(key, it)
    return min(enumerate(it), key=itemgetter(1))[0]

chain(*others)

Concatenate self with one or more Iterables, any of which may be infinite.

In other words, it links self and others together, in a chain. 🔗

An infinite Iterable will prevent the rest of the arguments from being included.

This is equivalent to list.extend(), except it is fully lazy and works with any Iterable.

See Also

Iter.insert() to add a single element at the beginning of the Iterator.

Parameters:

Name Type Description Default
*others Iterable[T]

Other iterables to concatenate.

()

Returns:

Name Type Description
Self Self

A new Iterator which will first iterate over values from the original Iterator and then over values from the others Iterables.

Example:

>>> import pyochain as pc
>>> pc.Iter((1, 2)).chain((3, 4), [5]).collect()
Seq(1, 2, 3, 4, 5)
>>> pc.Iter((1, 2)).chain(pc.Iter.from_count(3)).take(5).collect()
Seq(1, 2, 3, 4, 5)

Source code in src/pyochain/traits/_iterable.py
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
def chain(self, *others: Iterable[T]) -> Self:
    """Concatenate **self** with one or more `Iterables`, any of which may be infinite.

    In other words, it links **self** and **others** together, in a chain. 🔗

    An infinite `Iterable` will prevent the rest of the arguments from being included.

    This is equivalent to `list.extend()`, except it is fully lazy and works with any `Iterable`.

    See Also:
        `Iter.insert()` to add a single element at the beginning of the `Iterator`.

    Args:
        *others (Iterable[T]): Other iterables to concatenate.

    Returns:
        Self: A new `Iterator` which will first iterate over values from the original `Iterator` and then over values from the **others** `Iterable`s.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1, 2)).chain((3, 4), [5]).collect()
    Seq(1, 2, 3, 4, 5)
    >>> pc.Iter((1, 2)).chain(pc.Iter.from_count(3)).take(5).collect()
    Seq(1, 2, 3, 4, 5)

    ```
    """
    return self.__class__(cz.itertoolz.concat((self.__iter__(), *others)))

compress(*selectors)

Filter elements using a boolean selector iterable.

Parameters:

Name Type Description Default
*selectors bool

Boolean values indicating which elements to keep.

()

Returns:

Name Type Description
Self Self

An Iterator of the items selected by the boolean selectors.

Example:

>>> import pyochain as pc
>>> pc.Iter("ABCDEF").compress(1, 0, 1, 0, 1, 1).collect()
Seq('A', 'C', 'E', 'F')

Source code in src/pyochain/traits/_iterable.py
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
def compress(self, *selectors: bool) -> Self:
    """Filter elements using a boolean selector iterable.

    Args:
        *selectors (bool): Boolean values indicating which elements to keep.

    Returns:
        Self: An `Iterator` of the items selected by the boolean selectors.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter("ABCDEF").compress(1, 0, 1, 0, 1, 1).collect()
    Seq('A', 'C', 'E', 'F')

    ```
    """
    return self.__class__(itertools.compress(self.__iter__(), selectors))

cycle()

Repeat the Iterator indefinitely.

Warning

This creates an infinite Iterator.

Be sure to use Iter.take() or Iter.slice() to limit the number of items taken.

See Also

Iter.repeat() to repeat self as elements (Iter[Self]).

Returns:

Name Type Description
Self Self

A new Iterator that cycles through the elements indefinitely.

Example:

>>> import pyochain as pc
>>> pc.Iter((1, 2)).cycle().take(5).collect()
Seq(1, 2, 1, 2, 1)

Source code in src/pyochain/traits/_iterable.py
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
def cycle(self) -> Self:
    """Repeat the `Iterator` indefinitely.

    Warning:
        This creates an infinite `Iterator`.

        Be sure to use `Iter.take()` or `Iter.slice()` to limit the number of items taken.

    See Also:
        `Iter.repeat()` to repeat *self* as elements (`Iter[Self]`).

    Returns:
        Self: A new `Iterator` that cycles through the elements indefinitely.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1, 2)).cycle().take(5).collect()
    Seq(1, 2, 1, 2, 1)

    ```
    """
    return self.__class__(itertools.cycle(self.__iter__()))

elements()

Iterator over elements repeating each as many times as its count.

Note

if an element's count has been set to zero or is a negative number, elements() will ignore it.

Returns:

Name Type Description
Self Self

A new Iterator with elements repeated according to their counts.

Example:

>>> import pyochain as pc
>>> pc.Iter("ABCABC").elements().sort()
Vec('A', 'A', 'B', 'B', 'C', 'C')
Knuth's example for prime factors of 1836: 22 * 33 * 17**1
>>> import math
>>> data = [2, 2, 3, 3, 3, 17]
>>> pc.Iter(data).elements().into(math.prod)
1836

Source code in src/pyochain/traits/_iterable.py
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
def elements(self) -> Self:
    """Iterator over elements repeating each as many times as its count.

    Note:
        if an element's count has been set to zero or is a negative
        number, elements() will ignore it.

    Returns:
        Self: A new `Iterator` with elements repeated according to their counts.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter("ABCABC").elements().sort()
    Vec('A', 'A', 'B', 'B', 'C', 'C')

    ```
    Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
    ```python
    >>> import math
    >>> data = [2, 2, 3, 3, 3, 17]
    >>> pc.Iter(data).elements().into(math.prod)
    1836

    ```
    """
    from collections import Counter

    return self.__class__(Counter(self.__iter__()).elements())

eq(other)

Check if two Iterables are equal based on their data.

Note

This will consume any Iterator instances involved in the comparison (self and/or other).

Parameters:

Name Type Description Default
other Iterable[T]

Another instance of Iterable[T] to compare against.

required

Returns:

Name Type Description
bool bool

True if the underlying data are equal, False otherwise.

Example:

>>> import pyochain as pc
>>> pc.Iter((1,2,3)).eq(pc.Iter((1,2,3)))
True
>>> pc.Iter((1,2,3)).eq(pc.Seq([1,2]))
False
>>> pc.Iter((1,2,3)).eq(pc.Iter((1,2)))
False
>>> pc.Iter((1,2,3)).eq(pc.Vec([1,2,3]))
True

Source code in src/pyochain/traits/_iterable.py
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def eq(self, other: Iterable[T]) -> bool:
    """Check if two `Iterable`s are equal based on their data.

    Note:
        This will consume any `Iterator` instances involved in the comparison (**self** and/or **other**).

    Args:
        other (Iterable[T]): Another instance of `Iterable[T]` to compare against.

    Returns:
        bool: `True` if the underlying data are equal, `False` otherwise.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1,2,3)).eq(pc.Iter((1,2,3)))
    True
    >>> pc.Iter((1,2,3)).eq(pc.Seq([1,2]))
    False
    >>> pc.Iter((1,2,3)).eq(pc.Iter((1,2)))
    False
    >>> pc.Iter((1,2,3)).eq(pc.Vec([1,2,3]))
    True

    ```
    """
    return tls.eq(self.__iter__(), other)

find(predicate)

Searches for an element of an iterator that satisfies a predicate.

Takes a closure that returns true or false as predicate, and applies it to each element of the iterator.

Parameters:

Name Type Description Default
predicate Callable[[T], bool]

Function to evaluate each item.

required

Returns:

Type Description
Option[T]

Option[T]: The first element satisfying the predicate. Some(value) if found, NONE otherwise.

Example:

>>> import pyochain as pc
>>> def gt_five(x: int) -> bool:
...     return x > 5
>>>
>>> def gt_nine(x: int) -> bool:
...     return x > 9
>>>
>>> pc.Iter(range(10)).find(predicate=gt_five)
Some(6)
>>> pc.Iter(range(10)).find(predicate=gt_nine).unwrap_or("missing")
'missing'

Source code in src/pyochain/traits/_iterable.py
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
def find(self, predicate: Callable[[T], bool]) -> Option[T]:
    """Searches for an element of an iterator that satisfies a `predicate`.

    Takes a closure that returns true or false as `predicate`, and applies it to each element of the iterator.

    Args:
        predicate (Callable[[T], bool]): Function to evaluate each item.

    Returns:
        Option[T]: The first element satisfying the predicate. `Some(value)` if found, `NONE` otherwise.

    Example:
    ```python
    >>> import pyochain as pc
    >>> def gt_five(x: int) -> bool:
    ...     return x > 5
    >>>
    >>> def gt_nine(x: int) -> bool:
    ...     return x > 9
    >>>
    >>> pc.Iter(range(10)).find(predicate=gt_five)
    Some(6)
    >>> pc.Iter(range(10)).find(predicate=gt_nine).unwrap_or("missing")
    'missing'

    ```
    """
    return Option(next(filter(predicate, self), None))

fold(init, func)

Fold every element of the Iterator into an accumulator by applying an operation, returning the final result.

Parameters:

Name Type Description Default
init B

Initial value for the accumulator.

required
func Callable[[B, T], B]

Function that takes the accumulator and current element, returning the new accumulator value.

required

Returns:

Name Type Description
B B

The final accumulated value.

Note

This is similar to reduce() but with an initial value, making it equivalent to Python functools.reduce() with an initializer.

>>> import pyochain as pc
>>> pc.Iter([1, 2, 3]).fold(0, lambda acc, x: acc + x)
6
>>> pc.Iter([1, 2, 3]).fold(10, lambda acc, x: acc + x)
16
>>> pc.Iter(['a', 'b', 'c']).fold('', lambda acc, x: acc + x)
'abc'
Source code in src/pyochain/traits/_iterable.py
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
def fold[B](self, init: B, func: Callable[[B, T], B]) -> B:
    """Fold every element of the `Iterator` into an accumulator by applying an operation, returning the final result.

    Args:
        init (B): Initial value for the accumulator.
        func (Callable[[B, T], B]): Function that takes the accumulator and current element,
            returning the new accumulator value.

    Returns:
        B: The final accumulated value.

    Note:
        This is similar to `reduce()` but with an initial value, making it equivalent to
        Python `functools.reduce()` with an initializer.

    ```python
    >>> import pyochain as pc
    >>> pc.Iter([1, 2, 3]).fold(0, lambda acc, x: acc + x)
    6
    >>> pc.Iter([1, 2, 3]).fold(10, lambda acc, x: acc + x)
    16
    >>> pc.Iter(['a', 'b', 'c']).fold('', lambda acc, x: acc + x)
    'abc'

    ```
    """
    return functools.reduce(func, self, init)

for_each(func, *args, **kwargs)

Consume the Iterator by applying a function to each element in the Iterable.

Is a terminal operation, and is useful for functions that have side effects, or when you want to force evaluation of a lazy iterable.

Parameters:

Name Type Description Default
func Callable[Concatenate[T, P], Any]

Function to apply to each element.

required
*args P.args

Positional arguments for the function.

()
**kwargs P.kwargs

Keyword arguments for the function.

{}

Returns:

Name Type Description
None None

This is a terminal operation with no return value.

Example:

>>> import pyochain as pc
>>> pc.Seq([1, 2, 3]).iter().for_each(lambda x: print(x + 1))
2
3
4

Source code in src/pyochain/traits/_iterable.py
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
def for_each[**P](
    self,
    func: Callable[Concatenate[T, P], Any],
    *args: P.args,
    **kwargs: P.kwargs,
) -> None:
    """Consume the `Iterator` by applying a function to each element in the `Iterable`.

    Is a terminal operation, and is useful for functions that have side effects,
    or when you want to force evaluation of a lazy iterable.

    Args:
        func (Callable[Concatenate[T, P], Any]): Function to apply to each element.
        *args (P.args): Positional arguments for the function.
        **kwargs (P.kwargs): Keyword arguments for the function.

    Returns:
        None: This is a terminal operation with no return value.


    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Seq([1, 2, 3]).iter().for_each(lambda x: print(x + 1))
    2
    3
    4

    ```
    """
    for v in self.__iter__():
        func(v, *args, **kwargs)

for_each_star(func)

for_each_star(func: Callable[[Any], R]) -> None
for_each_star(func: Callable[[T1, T2], R]) -> None
for_each_star(func: Callable[[T1, T2, T3], R]) -> None
for_each_star(func: Callable[[T1, T2, T3, T4], R]) -> None
for_each_star(
    func: Callable[[T1, T2, T3, T4, T5], R],
) -> None
for_each_star(
    func: Callable[[T1, T2, T3, T4, T5, T6], R],
) -> None
for_each_star(
    func: Callable[[T1, T2, T3, T4, T5, T6, T7], R],
) -> None
for_each_star(
    func: Callable[[T1, T2, T3, T4, T5, T6, T7, T8], R],
) -> None
for_each_star(
    func: Callable[[T1, T2, T3, T4, T5, T6, T7, T8, T9], R],
) -> None
for_each_star(
    func: Callable[
        [T1, T2, T3, T4, T5, T6, T7, T8, T9, T10], R
    ],
) -> None

Consume the Iterator by applying a function to each unpacked item in the Iterable element.

Is a terminal operation, and is useful for functions that have side effects, or when you want to force evaluation of a lazy iterable.

Each item yielded by the Iterator is expected to be an Iterable itself (e.g., a tuple or list), and its elements are unpacked as arguments to the provided function.

This is often used after methods like zip() or enumerate() that yield tuples.

Parameters:

Name Type Description Default
func Callable[..., R]

Function to apply to each unpacked element.

required

Example:

>>> import pyochain as pc
>>> pc.Iter([(1, 2), (3, 4)]).for_each_star(lambda x, y: print(x + y))
3
7

Source code in src/pyochain/traits/_iterable.py
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
def for_each_star[U: Iterable[Any], R](
    self: PyoIterator[U],
    func: Callable[..., R],
) -> None:
    """Consume the `Iterator` by applying a function to each unpacked item in the `Iterable` element.

    Is a terminal operation, and is useful for functions that have side effects,
    or when you want to force evaluation of a lazy iterable.

    Each item yielded by the `Iterator` is expected to be an `Iterable` itself (e.g., a tuple or list),
    and its elements are unpacked as arguments to the provided function.

    This is often used after methods like `zip()` or `enumerate()` that yield tuples.

    Args:
        func (Callable[..., R]): Function to apply to each unpacked element.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter([(1, 2), (3, 4)]).for_each_star(lambda x, y: print(x + y))
    3
    7

    ```
    """
    for item in self.__iter__():
        func(*item)

ge(other)

Check if this Iterator is greater than or equal to other based on their data.

Parameters:

Name Type Description Default
other Iterable[T]

Another Iterable[T] to compare against.

required

Returns:

Name Type Description
bool bool

True if the underlying data of self is greater than or equal to that of other, False otherwise.

Example:

>>> import pyochain as pc
>>> pc.Iter((1,2,3)).ge((1,2))
True
>>> pc.Iter((1,2)).ge((1,2,3))
False

Source code in src/pyochain/traits/_iterable.py
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
def ge(self, other: Iterable[T]) -> bool:
    """Check if this `Iterator` is greater than or equal to *other* based on their data.

    Args:
        other (Iterable[T]): Another `Iterable[T]` to compare against.

    Returns:
        bool: `True` if the underlying data of **self** is greater than or equal to that of **other**, `False` otherwise.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1,2,3)).ge((1,2))
    True
    >>> pc.Iter((1,2)).ge((1,2,3))
    False

    ```
    """
    return tls.ge(self.__iter__(), other)

gt(other)

Check if this Iterator is greater than other based on their data.

Parameters:

Name Type Description Default
other Iterable[T]

Another Iterable[T] to compare against.

required

Returns:

Name Type Description
bool bool

True if the underlying data of self is greater than that of other, False otherwise.

Example:

>>> import pyochain as pc
>>> pc.Iter((1,2,3)).gt((1,2))
True
>>> pc.Iter((1,2)).gt((1,2,3))
False

Source code in src/pyochain/traits/_iterable.py
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
def gt(self, other: Iterable[T]) -> bool:
    """Check if this `Iterator` is greater than *other* based on their data.

    Args:
        other (Iterable[T]): Another `Iterable[T]` to compare against.

    Returns:
        bool: `True` if the underlying data of **self** is greater than that of **other**, `False` otherwise.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1,2,3)).gt((1,2))
    True
    >>> pc.Iter((1,2)).gt((1,2,3))
    False

    ```
    """
    return tls.gt(self.__iter__(), other)

insert(value)

Prepend the value to the Iterator.

Note

This can be considered the equivalent as list.append(), but for a lazy Iterator. However, append add the value at the end, while insert add it at the beginning.

See Also

Iter.chain() to add multiple elements at the end of the Iterator.

Parameters:

Name Type Description Default
value T

The value to prepend.

required

Returns:

Name Type Description
Self Self

A new Iterable wrapper with the value prepended.

Example:

>>> import pyochain as pc
>>> pc.Iter((2, 3)).insert(1).collect()
Seq(1, 2, 3)

Source code in src/pyochain/traits/_iterable.py
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
def insert(self, value: T) -> Self:
    """Prepend the *value* to the `Iterator`.

    Note:
        This can be considered the equivalent as `list.append()`, but for a lazy `Iterator`.
        However, append add the value at the **end**, while insert add it at the **beginning**.

    See Also:
        `Iter.chain()` to add multiple elements at the end of the `Iterator`.

    Args:
        value (T): The value to prepend.

    Returns:
        Self: A new Iterable wrapper with the value prepended.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((2, 3)).insert(1).collect()
    Seq(1, 2, 3)

    ```
    """
    return self.__class__(cz.itertoolz.cons(value, self.__iter__()))

interleave(*others)

Interleave multiple sequences element-wise.

Parameters:

Name Type Description Default
*others Iterable[T]

Other iterables to interleave.

()

Returns:

Name Type Description
Self Self

A new Iterable wrapper with interleaved elements.

Example:

>>> import pyochain as pc
>>> pc.Iter((1, 2)).interleave((3, 4)).collect()
Seq(1, 3, 2, 4)

Source code in src/pyochain/traits/_iterable.py
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
def interleave(self, *others: Iterable[T]) -> Self:
    """Interleave multiple sequences element-wise.

    Args:
        *others (Iterable[T]): Other iterables to interleave.

    Returns:
        Self: A new Iterable wrapper with interleaved elements.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1, 2)).interleave((3, 4)).collect()
    Seq(1, 3, 2, 4)

    ```
    """
    return self.__class__(cz.itertoolz.interleave((self.__iter__(), *others)))

intersperse(element)

Creates a new Iterator which places a copy of separator between adjacent items of the original iterator.

Parameters:

Name Type Description Default
element T

The element to interpose between items.

required

Returns:

Name Type Description
Self Self

A new Iterator with the element interposed.

Example:

>>> import pyochain as pc
>>> # Simple example with numbers
>>> pc.Iter([1, 2, 3]).intersperse(0).collect()
Seq(1, 0, 2, 0, 3)
>>> # Useful when chaining with other operations
>>> pc.Iter([10, 20, 30]).intersperse(5).sum()
70
>>> # Inserting separators between groups, then flattening
>>> pc.Iter([[1, 2], [3, 4], [5, 6]]).intersperse([-1]).flatten().collect()
Seq(1, 2, -1, 3, 4, -1, 5, 6)

Source code in src/pyochain/traits/_iterable.py
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
def intersperse(self, element: T) -> Self:
    """Creates a new `Iterator` which places a copy of separator between adjacent items of the original iterator.

    Args:
        element (T): The element to interpose between items.

    Returns:
        Self: A new `Iterator` with the element interposed.

    Example:
    ```python
    >>> import pyochain as pc
    >>> # Simple example with numbers
    >>> pc.Iter([1, 2, 3]).intersperse(0).collect()
    Seq(1, 0, 2, 0, 3)
    >>> # Useful when chaining with other operations
    >>> pc.Iter([10, 20, 30]).intersperse(5).sum()
    70
    >>> # Inserting separators between groups, then flattening
    >>> pc.Iter([[1, 2], [3, 4], [5, 6]]).intersperse([-1]).flatten().collect()
    Seq(1, 2, -1, 3, 4, -1, 5, 6)

    ```
    """
    return self.__class__(cz.itertoolz.interpose(element, self.__iter__()))

is_sorted(*, reverse=False, strict=False)

Returns True if the items of the Iterator are in sorted order.

The elements of the Iterator must support comparison operations.

The function returns False after encountering the first out-of-order item.

If there are no out-of-order items, the Iterator is exhausted.

Credits to more-itertools for the implementation.

See Also
  • is_sorted_by(): If your elements do not support comparison operations directly, or you want to sort based on a specific attribute or transformation.

Parameters:

Name Type Description Default
reverse bool

Whether to check for descending order.

False
strict bool

Whether to enforce strict sorting (no equal elements).

False

Returns:

Name Type Description
bool bool

True if items are sorted according to the criteria, False otherwise.

Example:

>>> import pyochain as pc
>>> pc.Iter([1, 2, 3, 4, 5]).is_sorted()
True
If strict, tests for strict sorting, that is, returns False if equal elements are found:
>>> pc.Iter([1, 2, 2]).is_sorted()
True
>>> pc.Iter([1, 2, 2]).is_sorted(strict=True)
False

Source code in src/pyochain/traits/_iterable.py
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
def is_sorted[U: SupportsComparison[Any]](
    self: PyoIterator[U], *, reverse: bool = False, strict: bool = False
) -> bool:
    """Returns `True` if the items of the `Iterator` are in sorted order.

    The elements of the `Iterator` must support comparison operations.

    The function returns `False` after encountering the first out-of-order item.

    If there are no out-of-order items, the `Iterator` is exhausted.

    Credits to **more-itertools** for the implementation.

    See Also:
        - `is_sorted_by()`: If your elements do not support comparison operations directly, or you want to sort based on a specific attribute or transformation.

    Args:
        reverse (bool): Whether to check for descending order.
        strict (bool): Whether to enforce strict sorting (no equal elements).

    Returns:
        bool: `True` if items are sorted according to the criteria, `False` otherwise.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter([1, 2, 3, 4, 5]).is_sorted()
    True

    ```
    If strict, tests for strict sorting, that is, returns False if equal elements are found:
    ```python
    >>> pc.Iter([1, 2, 2]).is_sorted()
    True
    >>> pc.Iter([1, 2, 2]).is_sorted(strict=True)
    False

    ```

    """
    return tls.is_sorted(self.__iter__(), reverse=reverse, strict=strict)

is_sorted_by(key, *, reverse=False, strict=False)

Returns True if the items of the Iterator are in sorted order according to the key function.

The function returns False after encountering the first out-of-order item.

If there are no out-of-order items, the Iterator is exhausted.

Credits to more-itertools for the implementation.

Parameters:

Name Type Description Default
key Callable[[T], SupportsComparison[Any]]

Function to extract a comparison key from each element.

required
reverse bool

Whether to check for descending order.

False
strict bool

Whether to enforce strict sorting (no equal elements).

False

Returns:

Name Type Description
bool bool

True if items are sorted according to the criteria, False otherwise.

Example:

>>> import pyochain as pc
>>> pc.Iter(["1", "2", "3", "4", "5"]).is_sorted_by(int)
True
>>> pc.Iter(["5", "4", "3", "1", "2"]).is_sorted_by(int, reverse=True)
False
If strict, tests for strict sorting, that is, returns False if equal elements are found:
>>> pc.Iter(["1", "2", "2"]).is_sorted_by(int)
True
>>> pc.Iter(["1", "2", "2"]).is_sorted_by(key=int, strict=True)
False

Source code in src/pyochain/traits/_iterable.py
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
def is_sorted_by(
    self,
    key: Callable[[T], SupportsComparison[Any]],
    *,
    reverse: bool = False,
    strict: bool = False,
) -> bool:
    """Returns `True` if the items of the `Iterator` are in sorted order according to the key function.

    The function returns `False` after encountering the first out-of-order item.

    If there are no out-of-order items, the `Iterator` is exhausted.

    Credits to **more-itertools** for the implementation.

    Args:
        key (Callable[[T], SupportsComparison[Any]]): Function to extract a comparison key from each element.
        reverse (bool): Whether to check for descending order.
        strict (bool): Whether to enforce strict sorting (no equal elements).

    Returns:
        bool: `True` if items are sorted according to the criteria, `False` otherwise.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter(["1", "2", "3", "4", "5"]).is_sorted_by(int)
    True
    >>> pc.Iter(["5", "4", "3", "1", "2"]).is_sorted_by(int, reverse=True)
    False

    ```
    If strict, tests for strict sorting, that is, returns False if equal elements are found:
    ```python
    >>> pc.Iter(["1", "2", "2"]).is_sorted_by(int)
    True
    >>> pc.Iter(["1", "2", "2"]).is_sorted_by(key=int, strict=True)
    False

    ```
    """
    return tls.is_sorted_by(self.__iter__(), key, reverse=reverse, strict=strict)

le(other)

Check if this Iterator is less than or equal to other based on their data.

Parameters:

Name Type Description Default
other Iterable[T]

Another instance of Iterable[T] to compare against.

required

Returns:

Name Type Description
bool bool

True if the underlying data of self is less than or equal to that of other, False otherwise.

Example:

>>> import pyochain as pc
>>> pc.Iter((1,2)).le(pc.Seq((1,2,3)))
True
>>> pc.Iter((1,2,3)).le(pc.Seq((1,2)))
False

Source code in src/pyochain/traits/_iterable.py
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
def le(self, other: Iterable[T]) -> bool:
    """Check if this `Iterator` is less than or equal to *other* based on their data.

    Args:
        other (Iterable[T]): Another instance of `Iterable[T]` to compare against.

    Returns:
        bool: `True` if the underlying data of self is less than or equal to that of other, `False` otherwise.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1,2)).le(pc.Seq((1,2,3)))
    True
    >>> pc.Iter((1,2,3)).le(pc.Seq((1,2)))
    False

    ```
    """
    return tls.le(self.__iter__(), other)

lt(other)

Check if this Iterator is less than other based on their data.

Parameters:

Name Type Description Default
other Iterable[T]

Another Iterable[T] to compare against.

required

Returns:

Name Type Description
bool bool

True if the underlying data of self is less than that of other, False otherwise.

Example:

>>> import pyochain as pc
>>> pc.Iter((1,2)).lt(pc.Seq((1,2,3)))
True
>>> pc.Iter((1,2,3)).lt(pc.Seq((1,2)))
False

Source code in src/pyochain/traits/_iterable.py
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
def lt(self, other: Iterable[T]) -> bool:
    """Check if this `Iterator` is less than *other* based on their data.

    Args:
        other (Iterable[T]): Another `Iterable[T]` to compare against.

    Returns:
        bool: `True` if the underlying data of self is less than that of other, `False` otherwise.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1,2)).lt(pc.Seq((1,2,3)))
    True
    >>> pc.Iter((1,2,3)).lt(pc.Seq((1,2)))
    False

    ```
    """
    return tls.lt(self.__iter__(), other)

ne(other)

Check if this Iterator and other are not equal based on their data.

Parameters:

Name Type Description Default
other Iterable[T]

Another instance of Iterable[T] to compare against.

required

Returns:

Name Type Description
bool bool

True if the underlying data are not equal, False otherwise.

Example:

>>> import pyochain as pc
>>> pc.Iter((1,2,3)).ne(pc.Iter((1,2,3)))
False
>>> pc.Iter((1,2,3)).ne(pc.Seq([1,2]))
True
>>> pc.Iter((1,2,3)).ne(pc.Iter((1,2)))
True
>>> pc.Iter((1,2,3)).ne(pc.Vec([1,2,3]))
False

Source code in src/pyochain/traits/_iterable.py
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
def ne(self, other: Iterable[T]) -> bool:
    """Check if this `Iterator` and *other* are not equal based on their data.

    Args:
        other (Iterable[T]): Another instance of `Iterable[T]` to compare against.

    Returns:
        bool: `True` if the underlying data are not equal, `False` otherwise.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1,2,3)).ne(pc.Iter((1,2,3)))
    False
    >>> pc.Iter((1,2,3)).ne(pc.Seq([1,2]))
    True
    >>> pc.Iter((1,2,3)).ne(pc.Iter((1,2)))
    True
    >>> pc.Iter((1,2,3)).ne(pc.Vec([1,2,3]))
    False

    ```
    """
    return tls.ne(self.__iter__(), other)

next()

Return the next element in the Iterator.

Note

The actual .__next__() method must be conform to the Python Iterator Protocol, and is what will be actually called if you iterate over the PyoIterator instance.

PyoIterator.next() is a convenience method that wraps the result in an Option to handle exhaustion gracefully, for custom use cases.

Returns:

Type Description
Option[T]

Option[T]: The next element in the iterator. Some[T], or NONE if the iterator is exhausted.

Example:

>>> import pyochain as pc
>>> it = pc.Seq([1, 2, 3]).iter()
>>> it.next().unwrap()
1
>>> it.next().unwrap()
2

Source code in src/pyochain/traits/_iterable.py
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
def next(self) -> Option[T]:
    """Return the next element in the `Iterator`.

    Note:
        The actual `.__next__()` method must be conform to the Python `Iterator` Protocol, and is what will be actually called if you iterate over the `PyoIterator` instance.

        `PyoIterator.next()` is a convenience method that wraps the result in an `Option` to handle exhaustion gracefully, for custom use cases.

    Returns:
        Option[T]: The next element in the iterator. `Some[T]`, or `NONE` if the iterator is exhausted.

    Example:
    ```python
    >>> import pyochain as pc
    >>> it = pc.Seq([1, 2, 3]).iter()
    >>> it.next().unwrap()
    1
    >>> it.next().unwrap()
    2

    ```
    """
    return Option(next(self, None))

nth(n)

Return the nth item of the Iterable at the specified n.

This is similar to __getitem__ but for lazy Iterators.

If n is out of bounds, returns NONE.

Parameters:

Name Type Description Default
n int

The index of the item to retrieve.

required

Returns:

Type Description
Option[T]

Option[T]: Some(item) at the specified n.

>>> import pyochain as pc
>>> pc.Iter([10, 20]).nth(1)
Some(20)
>>> pc.Iter([10, 20]).nth(3)
NONE
Source code in src/pyochain/traits/_iterable.py
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
def nth(self, n: int) -> Option[T]:
    """Return the nth item of the `Iterable` at the specified *n*.

    This is similar to `__getitem__` but for lazy `Iterators`.

    If *n* is out of bounds, returns `NONE`.

    Args:
        n (int): The index of the item to retrieve.

    Returns:
        Option[T]: `Some(item)` at the specified *n*.

    ```python
    >>> import pyochain as pc
    >>> pc.Iter([10, 20]).nth(1)
    Some(20)
    >>> pc.Iter([10, 20]).nth(3)
    NONE

    ```
    """
    try:
        return Some(next(itertools.islice(self.__iter__(), n, n + 1)))
    except StopIteration:
        return NONE

random_sample(probability, state=None)

Return elements from the Iterator with a given probability.

.random_sample() considers each item independently and without replacement.

See below how the first time it returned 13 items and the next time it returned 6 items.

Parameters:

Name Type Description Default
probability float

The probability of including each element.

required
state Random | int | None

Random state or seed for deterministic sampling.

None

Returns:

Name Type Description
Self Self

A new Iterator with randomly sampled elements.

>>> import pyochain as pc
>>> data = pc.Iter(range(100)).collect()
>>> data.iter().random_sample(0.1).collect()  # doctest: +SKIP
Seq(6, 9, 19, 35, 45, 50, 58, 62, 68, 72, 78, 86, 95)
>>> data.iter().random_sample(0.1).collect()  # doctest: +SKIP
Seq(6, 44, 54, 61, 69, 94)
Providing an integer seed for random_state will result in deterministic sampling.

Given the same seed it will return the same sample every time.

>>> data.iter().random_sample(0.1, state=2016).collect()
Seq(7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98)
>>> data.iter().random_sample(0.1, state=2016).collect()
Seq(7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98)
random_state can also be any object with a method random that returns floats between 0.0 and 1.0 (exclusive).
>>> from random import Random
>>> randobj = Random(2016)
>>> data.iter().random_sample(0.1, state=randobj).collect()
Seq(7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98)

Source code in src/pyochain/traits/_iterable.py
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
def random_sample(
    self, probability: float, state: Random | int | None = None
) -> Self:
    """Return elements from the `Iterator` with a given *probability*.

    `.random_sample()` considers each item independently and without replacement.

    See below how the first time it returned 13 items and the next time it returned 6 items.

    Args:
        probability (float): The probability of including each element.
        state (Random | int | None): Random state or seed for deterministic sampling.

    Returns:
        Self: A new `Iterator` with randomly sampled elements.
    ```python
    >>> import pyochain as pc
    >>> data = pc.Iter(range(100)).collect()
    >>> data.iter().random_sample(0.1).collect()  # doctest: +SKIP
    Seq(6, 9, 19, 35, 45, 50, 58, 62, 68, 72, 78, 86, 95)
    >>> data.iter().random_sample(0.1).collect()  # doctest: +SKIP
    Seq(6, 44, 54, 61, 69, 94)
    ```
    Providing an integer seed for random_state will result in deterministic sampling.

    Given the same seed it will return the same sample every time.
    ```python
    >>> data.iter().random_sample(0.1, state=2016).collect()
    Seq(7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98)
    >>> data.iter().random_sample(0.1, state=2016).collect()
    Seq(7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98)

    ```
    random_state can also be any object with a method random that returns floats between 0.0 and 1.0 (exclusive).
    ```python
    >>> from random import Random
    >>> randobj = Random(2016)
    >>> data.iter().random_sample(0.1, state=randobj).collect()
    Seq(7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98)

    ```
    """
    return self.__class__(
        cz.itertoolz.random_sample(probability, self.__iter__(), random_state=state)
    )

reduce(func)

Apply a function of two arguments cumulatively to the items of an iterable, from left to right.

Parameters:

Name Type Description Default
func Callable[[T, T], T]

Function to apply cumulatively to the items of the iterable.

required

Returns:

Name Type Description
T T

Single value resulting from cumulative reduction.

This effectively reduces the Iterator to a single value.

If initial is present, it is placed before the items of the Iterator in the calculation.

It then serves as a default when the Iterator is empty.

>>> import pyochain as pc
>>> pc.Iter([1, 2, 3]).reduce(lambda a, b: a + b)
6

Source code in src/pyochain/traits/_iterable.py
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
def reduce(self, func: Callable[[T, T], T]) -> T:
    """Apply a function of two arguments cumulatively to the items of an iterable, from left to right.

    Args:
        func (Callable[[T, T], T]): Function to apply cumulatively to the items of the iterable.

    Returns:
        T: Single value resulting from cumulative reduction.

    This effectively reduces the `Iterator` to a single value.

    If initial is present, it is placed before the items of the `Iterator` in the calculation.

    It then serves as a default when the `Iterator` is empty.
    ```python
    >>> import pyochain as pc
    >>> pc.Iter([1, 2, 3]).reduce(lambda a, b: a + b)
    6

    ```
    """
    return functools.reduce(func, self)

skip(n)

Drop first n elements.

Parameters:

Name Type Description Default
n int

Number of elements to skip.

required

Returns:

Name Type Description
Self Self

An Iterator of the items after skipping the first n items.

Example:

>>> import pyochain as pc
>>> pc.Iter((1, 2, 3)).skip(1).collect()
Seq(2, 3)

Source code in src/pyochain/traits/_iterable.py
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
def skip(self, n: int) -> Self:
    """Drop first n elements.

    Args:
        n (int): Number of elements to skip.

    Returns:
        Self: An `Iterator` of the items after skipping the first n items.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1, 2, 3)).skip(1).collect()
    Seq(2, 3)

    ```
    """
    return self.__class__(cz.itertoolz.drop(n, self.__iter__()))

skip_while(predicate)

Drop items while predicate holds.

Parameters:

Name Type Description Default
predicate Callable[[T], bool]

Function to evaluate each item.

required

Returns:

Name Type Description
Self Self

An Iterator of the items after skipping those for which the predicate is true.

Example:

>>> import pyochain as pc
>>> pc.Iter((1, 2, 0)).skip_while(lambda x: x > 0).collect()
Seq(0,)

Source code in src/pyochain/traits/_iterable.py
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
def skip_while(self, predicate: Callable[[T], bool]) -> Self:
    """Drop items while predicate holds.

    Args:
        predicate (Callable[[T], bool]): Function to evaluate each item.

    Returns:
        Self: An `Iterator` of the items after skipping those for which the predicate is true.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1, 2, 0)).skip_while(lambda x: x > 0).collect()
    Seq(0,)

    ```
    """
    return self.__class__(itertools.dropwhile(predicate, self.__iter__()))

slice(start=None, stop=None, step=None)

Return a slice of the Iterator.

Parameters:

Name Type Description Default
start int | None

Starting index of the slice.

None
stop int | None

Ending index of the slice.

None
step int | None

Step size for the slice.

None

Returns:

Name Type Description
Self Self

An Iterator of the sliced items.

Example:

>>> import pyochain as pc
>>> data = (1, 2, 3, 4, 5)
>>> pc.Iter(data).slice(1, 4).collect()
Seq(2, 3, 4)
>>> pc.Iter(data).slice(step=2).collect()
Seq(1, 3, 5)

Source code in src/pyochain/traits/_iterable.py
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
def slice(
    self,
    start: int | None = None,
    stop: int | None = None,
    step: int | None = None,
) -> Self:
    """Return a slice of the `Iterator`.

    Args:
        start (int | None): Starting index of the slice.
        stop (int | None): Ending index of the slice.
        step (int | None): Step size for the slice.

    Returns:
        Self: An `Iterator` of the sliced items.

    Example:
    ```python
    >>> import pyochain as pc
    >>> data = (1, 2, 3, 4, 5)
    >>> pc.Iter(data).slice(1, 4).collect()
    Seq(2, 3, 4)
    >>> pc.Iter(data).slice(step=2).collect()
    Seq(1, 3, 5)

    ```
    """
    return self.__class__(itertools.islice(self.__iter__(), start, stop, step))

step_by(step)

Creates an Iterator starting at the same point, but stepping by the given step at each iteration.

Note

The first element of the iterator will always be returned, regardless of the step given.

Parameters:

Name Type Description Default
step int

Step size for selecting items.

required

Returns:

Name Type Description
Self Self

An Iterator of every nth item.

Example:

>>> import pyochain as pc
>>> pc.Iter([0, 1, 2, 3, 4, 5]).step_by(2).collect()
Seq(0, 2, 4)

Source code in src/pyochain/traits/_iterable.py
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
def step_by(self, step: int) -> Self:
    """Creates an `Iterator` starting at the same point, but stepping by the given **step** at each iteration.

    Note:
        The first element of the iterator will always be returned, regardless of the **step** given.

    Args:
        step (int): Step size for selecting items.

    Returns:
        Self: An `Iterator` of every nth item.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter([0, 1, 2, 3, 4, 5]).step_by(2).collect()
    Seq(0, 2, 4)

    ```
    """
    return self.__class__(cz.itertoolz.take_nth(step, self.__iter__()))

take(n)

Creates an iterator that yields the first n elements, or fewer if the underlying iterator ends sooner.

Iter.take(n) yields elements until n elements are yielded or the end of the iterator is reached (whichever happens first).

The returned iterator is either:

  • A prefix of length n if the original iterator contains at least n elements
  • All of the (fewer than n) elements of the original iterator if it contains fewer than n elements.

Parameters:

Name Type Description Default
n int

Number of elements to take.

required

Returns:

Name Type Description
Self Self

An Iterator of the first n items.

Example:

>>> import pyochain as pc
>>> data = [1, 2, 3]
>>> pc.Iter(data).take(2).collect()
Seq(1, 2)
>>> pc.Iter(data).take(5).collect()
Seq(1, 2, 3)

Source code in src/pyochain/traits/_iterable.py
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
def take(self, n: int) -> Self:
    """Creates an iterator that yields the first n elements, or fewer if the underlying iterator ends sooner.

    `Iter.take(n)` yields elements until n elements are yielded or the end of the iterator is reached (whichever happens first).

    The returned iterator is either:

    - A prefix of length n if the original iterator contains at least n elements
    - All of the (fewer than n) elements of the original iterator if it contains fewer than n elements.

    Args:
        n (int): Number of elements to take.

    Returns:
        Self: An `Iterator` of the first n items.

    Example:
    ```python
    >>> import pyochain as pc
    >>> data = [1, 2, 3]
    >>> pc.Iter(data).take(2).collect()
    Seq(1, 2)
    >>> pc.Iter(data).take(5).collect()
    Seq(1, 2, 3)

    ```
    """
    return self.__class__(itertools.islice(self.__iter__(), n))

take_while(predicate)

Take items while predicate holds.

Parameters:

Name Type Description Default
predicate Callable[[T], bool]

Function to evaluate each item.

required

Returns:

Name Type Description
Self Self

An Iterator of the items taken while the predicate is true.

Example:

>>> import pyochain as pc
>>> pc.Iter((1, 2, 0)).take_while(lambda x: x > 0).collect()
Seq(1, 2)

Source code in src/pyochain/traits/_iterable.py
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
def take_while(self, predicate: Callable[[T], bool]) -> Self:
    """Take items while predicate holds.

    Args:
        predicate (Callable[[T], bool]): Function to evaluate each item.

    Returns:
        Self: An `Iterator` of the items taken while the predicate is true.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter((1, 2, 0)).take_while(lambda x: x > 0).collect()
    Seq(1, 2)

    ```
    """
    return self.__class__(itertools.takewhile(predicate, self.__iter__()))

try_find(predicate)

Applies a function returning Result[bool, E] to find first matching element.

Short-circuits: stops at the first successful True or on the first error.

Parameters:

Name Type Description Default
predicate Callable[[T], Result[bool, E]]

Function returning a Result[bool, E].

required

Returns:

Type Description
Result[Option[T], E]

Result[Option[T], E]: The first matching element, or the first error.

Example:

>>> import pyochain as pc
>>> def is_even(x: int) -> pc.Result[bool, str]:
...     return pc.Ok(x % 2 == 0) if x >= 0 else pc.Err("negative number")
>>>
>>> pc.Iter(range(1, 6)).try_find(is_even)
Ok(Some(2))

Source code in src/pyochain/traits/_iterable.py
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
def try_find[E](
    self, predicate: Callable[[T], Result[bool, E]]
) -> Result[Option[T], E]:
    """Applies a function returning `Result[bool, E]` to find first matching element.

    Short-circuits: stops at the first successful `True` or on the first error.

    Args:
        predicate (Callable[[T], Result[bool, E]]): Function returning a `Result[bool, E]`.

    Returns:
        Result[Option[T], E]: The first matching element, or the first error.

    Example:
    ```python
    >>> import pyochain as pc
    >>> def is_even(x: int) -> pc.Result[bool, str]:
    ...     return pc.Ok(x % 2 == 0) if x >= 0 else pc.Err("negative number")
    >>>
    >>> pc.Iter(range(1, 6)).try_find(is_even)
    Ok(Some(2))

    ```
    """
    return tls.try_find(self.__iter__(), predicate)

try_fold(init, func)

Folds every element into an accumulator, short-circuiting on error.

Applies func cumulatively to items and the accumulator.

If func returns an error, stops and returns that error.

Parameters:

Name Type Description Default
init B

Initial accumulator value.

required
func Callable[[B, T], Result[B, E]]

Function that takes the accumulator and element, returns a Result[B, E].

required

Returns:

Type Description
Result[B, E]

Result[B, E]: Final accumulator or the first error.

Example:

>>> import pyochain as pc
>>> def checked_add(acc: int, x: int) -> pc.Result[int, str]:
...     new_val = acc + x
...     if new_val > 100:
...         return pc.Err("overflow")
...     return pc.Ok(new_val)
>>>
>>> pc.Iter([1, 2, 3]).try_fold(0, checked_add)
Ok(6)
>>> pc.Iter([50, 40, 20]).try_fold(0, checked_add)
Err('overflow')
>>> pc.Iter([]).try_fold(0, checked_add)
Ok(0)

Source code in src/pyochain/traits/_iterable.py
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
def try_fold[B, E](
    self, init: B, func: Callable[[B, T], Result[B, E]]
) -> Result[B, E]:
    """Folds every element into an accumulator, short-circuiting on error.

    Applies **func** cumulatively to items and the accumulator.

    If **func** returns an error, stops and returns that error.

    Args:
        init (B): Initial accumulator value.
        func (Callable[[B, T], Result[B, E]]): Function that takes the accumulator and element, returns a `Result[B, E]`.

    Returns:
        Result[B, E]: Final accumulator or the first error.

    Example:
    ```python
    >>> import pyochain as pc
    >>> def checked_add(acc: int, x: int) -> pc.Result[int, str]:
    ...     new_val = acc + x
    ...     if new_val > 100:
    ...         return pc.Err("overflow")
    ...     return pc.Ok(new_val)
    >>>
    >>> pc.Iter([1, 2, 3]).try_fold(0, checked_add)
    Ok(6)
    >>> pc.Iter([50, 40, 20]).try_fold(0, checked_add)
    Err('overflow')
    >>> pc.Iter([]).try_fold(0, checked_add)
    Ok(0)

    ```
    """
    return tls.try_fold(self.__iter__(), init, func)

try_for_each(f)

Applies a fallible function to each item in the Iterator, stopping at the first error and returning that error.

This can also be thought of as the fallible form of .for_each().

Parameters:

Name Type Description Default
f Callable[[T], Result[Any, E]]

A function that takes an item of type T and returns a Result.

required

Returns:

Type Description
Result[None, E]

Result[None, E]: Returns Ok(None) if all applications of f were successful (i.e., returned Ok), or the first error E encountered.

Example:

>>> import pyochain as pc
>>> def validate_positive(n: int) -> pc.Result[None, str]:
...     if n > 0:
...         return pc.Ok(None)
...     return pc.Err(f"Value {n} is not positive")
>>> pc.Iter([1, 2, 3, 4, 5]).try_for_each(validate_positive)
Ok(None)
>>> # Short-circuit on first error:
>>> pc.Iter([1, 2, -1, 4]).try_for_each(validate_positive)
Err('Value -1 is not positive')

Source code in src/pyochain/traits/_iterable.py
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
def try_for_each[E](self, f: Callable[[T], Result[Any, E]]) -> Result[None, E]:
    """Applies a fallible function to each item in the `Iterator`, stopping at the first error and returning that error.

    This can also be thought of as the fallible form of `.for_each()`.

    Args:
        f (Callable[[T], Result[Any, E]]): A function that takes an item of type `T` and returns a `Result`.

    Returns:
        Result[None, E]: Returns `Ok(None)` if all applications of **f** were successful (i.e., returned `Ok`), or the first error `E` encountered.

    Example:
    ```python
    >>> import pyochain as pc
    >>> def validate_positive(n: int) -> pc.Result[None, str]:
    ...     if n > 0:
    ...         return pc.Ok(None)
    ...     return pc.Err(f"Value {n} is not positive")
    >>> pc.Iter([1, 2, 3, 4, 5]).try_for_each(validate_positive)
    Ok(None)
    >>> # Short-circuit on first error:
    >>> pc.Iter([1, 2, -1, 4]).try_for_each(validate_positive)
    Err('Value -1 is not positive')

    ```
    """
    for item in self.__iter__():
        res = f(item)
        if res.is_err():
            return res
    return Ok(None)

try_reduce(func)

Reduces elements to a single one, short-circuiting on error.

Uses the first element as the initial accumulator. If func returns an error, stops immediately.

Parameters:

Name Type Description Default
func Callable[[T, T], Result[T, E]]

Function that reduces two items, returns a Result[T, E].

required

Returns:

Type Description
Result[Option[T], E]

Result[Option[T], E]: Final accumulated value or the first error. Returns Ok(NONE) for empty iterable.

Example:

>>> import pyochain as pc
>>> def checked_add(x: int, y: int) -> pc.Result[int, str]:
...     if x + y > 100:
...         return pc.Err("overflow")
...     return pc.Ok(x + y)
>>>
>>> pc.Iter([1, 2, 3]).try_reduce(checked_add)
Ok(Some(6))
>>> pc.Iter([50, 60]).try_reduce(checked_add)
Err('overflow')
>>> pc.Iter([]).try_reduce(checked_add)
Ok(NONE)

Source code in src/pyochain/traits/_iterable.py
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
def try_reduce[E](
    self, func: Callable[[T, T], Result[T, E]]
) -> Result[Option[T], E]:
    """Reduces elements to a single one, short-circuiting on error.

    Uses the first element as the initial accumulator. If **func** returns an error, stops immediately.

    Args:
        func (Callable[[T, T], Result[T, E]]): Function that reduces two items, returns a `Result[T, E]`.

    Returns:
        Result[Option[T], E]: Final accumulated value or the first error. Returns `Ok(NONE)` for empty iterable.

    Example:
    ```python
    >>> import pyochain as pc
    >>> def checked_add(x: int, y: int) -> pc.Result[int, str]:
    ...     if x + y > 100:
    ...         return pc.Err("overflow")
    ...     return pc.Ok(x + y)
    >>>
    >>> pc.Iter([1, 2, 3]).try_reduce(checked_add)
    Ok(Some(6))
    >>> pc.Iter([50, 60]).try_reduce(checked_add)
    Err('overflow')
    >>> pc.Iter([]).try_reduce(checked_add)
    Ok(NONE)

    ```
    """
    return tls.try_reduce(self.__iter__(), func)

unique(key=None)

Return only unique elements of the iterable.

Parameters:

Name Type Description Default
key Callable[[T], Any] | None

Function to transform items before comparison.

None

Returns:

Name Type Description
Self Self

An Iterator of the unique items.

Example:

>>> import pyochain as pc
>>> pc.Iter([1, 2, 3]).unique().collect()
Seq(1, 2, 3)
>>> pc.Iter([1, 2, 1, 3]).unique().collect()
Seq(1, 2, 3)
Uniqueness can be defined by key keyword
>>> pc.Iter(["cat", "mouse", "dog", "hen"]).unique(key=len).collect()
Seq('cat', 'mouse')

Source code in src/pyochain/traits/_iterable.py
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
def unique(self, key: Callable[[T], Any] | None = None) -> Self:
    """Return only unique elements of the iterable.

    Args:
        key (Callable[[T], Any] | None): Function to transform items before comparison.

    Returns:
        Self: An `Iterator` of the unique items.

    Example:
    ```python
    >>> import pyochain as pc
    >>> pc.Iter([1, 2, 3]).unique().collect()
    Seq(1, 2, 3)
    >>> pc.Iter([1, 2, 1, 3]).unique().collect()
    Seq(1, 2, 3)

    ```
    Uniqueness can be defined by key keyword
    ```python
    >>> pc.Iter(["cat", "mouse", "dog", "hen"]).unique(key=len).collect()
    Seq('cat', 'mouse')

    ```
    """
    return self.__class__(cz.itertoolz.unique(self.__iter__(), key=key))